Evaluation of Seismic Behavior of Steel Moment Resisting Frames Considering Nonlinear Soil-structure Interaction
Authors
Abstract:
In structural analysis, the base of structures is usually assumed to be completely rigid. However, the combination of foundation and the subsurface soil, makes in fact a flexible-base for the soil-structure system. It is well-known that the structural responses can be significantly affected by incorporating the Soil-structure Interaction (SSI) effects. The aim of the present study is to provide more accurate structural responses analysis by considering the influence of SSI. It is noteworthy that the input ground motion records imposed to the combination of the soil, foundation and structure were selected in a such way that their characteristics were completely matched with the subsurface soil of structures. For this purpose, 3, 6, 9, 12, 15, 18 and 20-storey structures resting on a shallow foundation were selected and the concept of Beam on Nonlinear Winkler Foundation (BNWF) model is employed. The seismic responses of these structures were calculated based on the five different types of soil and the outcomes were compared with those from fixed-base structures. A set of 35 ground motion excitations recorded on different soil types, is selected which categorized to 5 sets consist of 7 records. Non-Linear Response History Analysis (NL-RHA) was performed and radiation damping considered for all of the structures and soil types. The results clearly showed that the inter-storey drift ratio was reduced in lower stories considering SSI effects. These effects are strongly increased, especially with increasing the slenderness ratio of the structures and softening the subsurface soil. Finally, the period lengthening ratio of studied structures, for various soil types was investigated.
similar resources
SEISMIC OPTIMIZATION OF STEEL MOMENT RESISTING FRAMES CONSIDERING SOIL-STRUCTURE INTERACTION
The main purpose of the present work is to investigate the impact of soil-structure interaction on performance-based design optimization of steel moment resisting frame (MRF) structures. To this end, the seismic performance of optimally designed MRFs with rigid supports is compared with that of the optimal designs with a flexible base in the context of performance-based design. Two efficient me...
full textRobustness Assessment of Steel Moment Resisting Frames
Nowadays, many buildings with steel Moment Resisting Frames (MRF) are built in seismic zones when seismic codes are at its early stages of development, and as such, these structures are often designed solely to resist lateral wind loads without providing an overall ductile mechanism. On the other hand, current seismic design criteria based on hierarchy of resistance allow enhancing the structur...
full textA Technique for Seismic Rehabilitation of Damaged Steel Moment Resisting Frames
Moment resisting frames as one of the conventional lateral load resisting systems in buildings suffer from some limitations including code limitations on minimum span-to-depth ratio to ensure the formation of plastic hinges with adequate length at beam ends. According to seismic codes, in ordinary steel moment resisting frames the minimum span-to-depth ratios should be limited to 5 and in speci...
full textASSESSMENT OF DUCTILITY REDUCTION FACTOR FOR OPTIMUM SEISMIC DESIGNED STEEL MOMENT-RESISTING FRAMES
In the present study, ten steel-moment resisting frames (SMRFs) having different numbers of stories ranging from 3 to 20 stories and fundamental periods of vibration ranging from 0.3 to 3.0 second were optimized subjected to a set of earthquake ground motions using the concept of uniform damage distribution along the height of the structures. Based on the step-by-step optimization algorithm dev...
full textPERFORMANCE BASED DESIGN OPTIMIZATION OF STEEL MOMENT RESISTING FRAMES INCORPORATING SEISMIC DEMAND AND CONNECTION PARAMETERS UNCERTAINTIES
One of the most important problems discussed recently in structural engineering is the structural reliability analysis considering uncertainties. To have an efficient optimization process for designing a safe structure, firstly it is required to study the effects of uncertainties on the seismic performance of structure and then incorporate these effects on the optimization process. In this stud...
full textEvaluation of Torsional Provisions of Seismic Codes Considering Effects of Soil-Structure Interaction
In this study, the effective parameters on the inelastic response of asymmetric buildings is evaluated for an ensemble of real Iranian earthquake records by considering soil-structure interaction. Then, the design eccentricity obtained from the inelastic dynamic soil-structure analysis is compared with the design eccentricity of seisimic codes of Iran, ATC-3, New Zeland, Canada, Mexico, Austral...
full textMy Resources
Journal title
volume 31 issue 7
pages 1020- 1027
publication date 2018-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023